軟硬件全開源,航芯方案分享 | 智能電動牙刷方案
當(dāng)代口腔問題頻發(fā),讓人們越來越重視口腔衛(wèi)生。傳統(tǒng)的刷牙方式,由于個人習(xí)慣和刷牙方式的不同,會不同程度地導(dǎo)致牙齦受損,牙菌斑去除不徹底等問題。而電動牙刷設(shè)備,基于其相對程序化的刷牙方式,可根據(jù)個人口腔特性支持自主選擇,調(diào)節(jié)刷牙力度。而且在刷牙過程中,不需要過多的手部動作,僅需要調(diào)節(jié)刷牙的角度,更多的清潔工作交付由牙刷本身的特性來完成。方便人們的同時(shí)也更能有效的減少口腔問題。
電動牙刷類型
現(xiàn)在市面上電動牙刷品類繁多,從刷頭的方式可將其分為兩大類型:旋轉(zhuǎn)式和振動式(也叫聲波式)。參考https://zhuanlan.zhihu.com/p/42097327
圖1. 電動牙刷工作方式對比圖
旋轉(zhuǎn)式電動牙刷是由電機(jī)帶動刷頭旋轉(zhuǎn),牙面清潔度高,但牙縫清潔能力薄弱且相較于振動式,更易損傷牙釉質(zhì)。而振動式,由電機(jī)帶動刷頭進(jìn)行上下的高頻振動,高頻擺動的刷頭能高效完成洗刷牙齒的動作,可以讓牙膏與水的混合物產(chǎn)生大量微小的氣泡,氣泡爆裂時(shí)產(chǎn)生的壓力可以更深入牙縫達(dá)到深度的清潔效果。
振動式的實(shí)現(xiàn)有兩種方式,一種由偏心振動電機(jī)實(shí)現(xiàn),多用于中低檔的電動牙刷方案。該種方式的電動牙刷振動感強(qiáng),振動無序。另一種則是采用線性電機(jī),業(yè)內(nèi)也稱之為磁懸浮電機(jī)。
圖2. 磁懸浮電機(jī)示意圖
磁懸浮電機(jī)的優(yōu)點(diǎn)在于其在工作運(yùn)行噪聲小,機(jī)身振感低,振動能量集中,清潔效果佳。因此,本文采用ACM32F030作為主控芯片,基于磁懸浮電機(jī)提出一款電動牙刷的設(shè)計(jì)方案。
設(shè)計(jì)方案
本文描述的電動牙刷方案,是基于上海航芯ACM32F030系列的MCU進(jìn)行設(shè)計(jì),整體的方案框圖如下所示:
圖3. 基于ACM32F030/070電動牙刷設(shè)計(jì)方案框圖
ACM32F0X0 系列是一款支持多種低功耗模式的通用MCU。集成12位1.6 Msps高精度ADC以及比較器、運(yùn)放、觸控按鍵控制器、段式LCD控制器,內(nèi)置高性能定時(shí)器、多路UART、LPUART、SPI、I2C等豐富的通訊外設(shè),內(nèi)建AES、TRNG等信息安全模塊,支持多種低功耗模式,具有高整合度、高抗干擾、高可靠性的特點(diǎn)。本產(chǎn)品采用ARM Cortex-M0系列內(nèi)核,最高工作頻率64MHz。足以滿足一般的電動牙刷方案的需求。
掃碼即可立即購買ACM32F070KBU7
備注:ACM32F030和070軟硬件兼容
掃碼即可立即購買開發(fā)板
軟硬件下載鏈接如下:
https://gitee.com/acm32-mcu/electric-toothbrush
https://github.com/ACM32-MCU/electric-toothbrush
? 人機(jī)交互系統(tǒng)
本文論述的設(shè)計(jì)方案中的人機(jī)交互功能是采用簡單的LED和按鍵的方式進(jìn)行實(shí)現(xiàn)。共有1個按鍵和6個LED。按鍵需實(shí)現(xiàn)設(shè)備的開關(guān)機(jī)以及模式切換功能。設(shè)備會根據(jù)按鍵按下時(shí)間的長短來判定當(dāng)前的動作是需要切換模式或是開關(guān)機(jī)操作。6個LED中有3個用于工作模式指示,最大可支持7種工作模式(23-1),本設(shè)計(jì)方案中僅提供了三種模式。另外3個LED用于系統(tǒng)狀態(tài)指示,包括正常,欠壓,充電,充滿4種電壓狀態(tài)。
長短按識別程序:
void keyPressHandler(void) { key.isPressed = Key_GetPressValue(); switch(key.pressState) { case 0: if(key.isPressed) { key.pressTime = 0; key.pressState = 1; } break; case 1: /* eliminate jitter */ if(key.isPressed) { if(++key.pressTime > 10) key.pressState = 2; } else key.pressState = 0; break; case 2: /* whether long press is existed */ if(key.isPressed) { if(++key.pressTime > LONG_PRESS_TIME) key.pressState = 3; } else { if(key.shortPressHandler != NULL) key.shortPressHandler(); else DEBUG_KEY("have no short press handler!!\r\n"); key.pressState = 0; } break; case 3: if(key.longPressHandler != NULL) key.longPressHandler(); else DEBUG_KEY("have no long press handler!!\r\n"); key.pressState = 4; break; case 4: /* wait for releasing key */ if(key.isPressed == 0) key.pressState = 0; break; } }
工作指示程序:
void appMotorModeLedControl(void) { static uint8_t state = 0xFF; if(sys.status == SYSTEM_RUNMODE) { if(state != sys.motorStatus) { state = sys.motorStatus; if(sys.motorStatus == 0) { ModeLed_Select(MODE_LED_1, MODE_LED_ON); } else if(sys.motorStatus == 1) { ModeLed_Select(MODE_LED_2, MODE_LED_ON); } else if(sys.motorStatus == 2) { ModeLed_Select(MODE_LED_3, MODE_LED_ON); } } } else { state = 0xFF; ModeLed_Select(MODE_LED_UNKNOWN, MODE_LED_OFF); } }
系統(tǒng)指示程序:
void appSysLedController(void) { static uint8_t led_state = 0xFF; if(led_state != led.state) { led_state = led.state; if(led.state == LED_OFF) { led.duty = 0; PowerLed_Select(PWR_LED_UNKNOWN, PWR_LED_OFF); PWM_dutySet(PWM_LED, led.duty); } else if(led.state == LED_TWINKLE) // low power warning { led.duty = 0; PowerLed_Select(PWR_LED_R, PWR_LED_ON); PWM_dutySet(PWM_LED, led.duty); } else if(led.state == LED_ON) { led.duty = 0; PowerLed_Select(PWR_LED_R, PWR_LED_OFF); PWM_dutySet(PWM_LED, led.duty); } else if(led.state == LED_BREATHE) { if(led.duty == PWM_DUTY_MAX) led.dir = LED_FADE; else led.dir = LED_BRIGHTER; } else led.state = LED_OFF; } else{ if(led.state == LED_BREATHE) { PowerLed_Select(PWR_LED_UNKNOWN, PWR_LED_OFF); if(led.dir == LED_BRIGHTER) { if(led.duty < PWM_DUTY_MAX) led.duty += BREATHE_INTERVAL; else { if(++led.cnt > BREATHE_HOLD_TIME) { led.dir = LED_FADE; led.cnt = 0; } } } else { if(led.duty > BREATHE_INTERVAL) led.duty -= BREATHE_INTERVAL; else { led.duty = 0; if(++led.cnt > BREATHE_HOLD_TIME) { led.dir = LED_BRIGHTER; led.cnt = 0; } } } PWM_dutySet(PWM_LED, led.duty); } } }
? 電源及功耗管理
電動牙刷產(chǎn)品的續(xù)航能力也是一直備受人們關(guān)注。本設(shè)計(jì)方案在低功耗的處理,摒棄了一般的休眠方式,直接采用關(guān)閉電源來避免設(shè)備在不工作狀態(tài)下的設(shè)備功耗。整個設(shè)備的供電線路共有三種,如下圖所示。
圖4. 基于ACM32F030的電動牙刷供電電路(部分)
正常情況下,設(shè)備不在充電時(shí),VCHARG電壓為0,需要關(guān)機(jī)時(shí),按鍵彈開,PWR_KEY為低電平,芯片內(nèi)部程序也將PWR_LOCK拉低,此時(shí)Q2關(guān)斷,Q2的D極電壓同VBAT,從而引起Q1斷開,VCCIN斷電,系統(tǒng)關(guān)機(jī)。而開機(jī)時(shí),按鍵按下,PWR_KEY先被拉至高電平,Q2導(dǎo)通,Q2的D極拉低,則Q1導(dǎo)通,設(shè)備供電,程序檢測到開機(jī),拉高PWR_LOCK,此時(shí),盡管按鍵彈開,PWR_LOCK仍然會提供Q2的導(dǎo)通電壓,系統(tǒng)正常工作。充電時(shí),Q2的導(dǎo)通電壓會由VCHARG提供,系統(tǒng)保持在工作狀態(tài),此時(shí)會程序會檢測系統(tǒng)的運(yùn)行狀態(tài),在不需要啟動時(shí),進(jìn)入休眠狀態(tài)。
電源管理部分,則通過鋰電池充電芯片檢測是否進(jìn)行充電,同時(shí)通過一路ADC監(jiān)測電池電壓。為減少芯片工作負(fù)擔(dān),電池電壓的欠壓和滿電通過ADC門限電壓功能來實(shí)現(xiàn)。ADC的門限電壓初始化程序如下:
// ADC Watchdog config ADC_WDT_Handle.ITMode = ENABLE; ADC_WDT_Handle.WatchdogMode = ADC_ANALOGWATCHDOG_RCH_ALL; ADC_WDT_Handle.Channel = channel; ADC_WDT_Handle.HighThreshold = (HIGH_POWER_THS * 0x0FFF) / VREF ; ADC_WDT_Handle.LowThreshold = (LOW_POWER_THS * 0x0FFF) / VREF ;
? 智能管理系統(tǒng)
智能管理系統(tǒng)分為兩個部分,一部分為上位機(jī)的數(shù)據(jù)處理,由云端處理,另一部分是電動牙刷數(shù)據(jù)記錄和傳輸。整個的實(shí)現(xiàn)過程可簡述為,電動牙刷通過慣性測量儀QMI8658C記錄電動牙刷在使用過程中的運(yùn)動軌跡,并實(shí)時(shí)將該部分?jǐn)?shù)據(jù)以及整個系統(tǒng)的工作參數(shù)通過BLE發(fā)送到手機(jī),手機(jī)連接云端,并將數(shù)據(jù)傳輸至云平臺進(jìn)行數(shù)據(jù)解析,分析用戶刷牙的健康指數(shù),并將相關(guān)建議反饋至手機(jī)。電動牙刷作為數(shù)據(jù)采集設(shè)備,需上報(bào)實(shí)時(shí)數(shù)據(jù),結(jié)構(gòu)如下:
typedef __packed struct{ uint32_t time; // This shows the relative time of each activity uint16_t location[3]; // This shows the acceleration of brush when using uint16_t pressure; // This is the force between tooth and brush uint16_t angle[3]; // This shows the angle between brush }BLE_RealTimeDataDef; // This define the data structure about brushing tooth in real time
其中,location為三軸的加速度,angle為三軸的角度。定時(shí)上傳電動牙刷的相關(guān)實(shí)時(shí)數(shù)據(jù)。上位機(jī)根據(jù)一系列點(diǎn)位數(shù)據(jù)進(jìn)行建模計(jì)算可得到整個牙刷的運(yùn)動軌跡。
? 電機(jī)驅(qū)動系統(tǒng)
電動牙刷的驅(qū)動系統(tǒng)是通過H橋芯片MX612E進(jìn)行處理,MX612E的輸入端連接芯片的PWM互補(bǔ)輸出端口。如下圖所示:
圖5. 電動牙刷電機(jī)驅(qū)動電路
本設(shè)計(jì)中的電動牙刷采用磁懸浮電機(jī),內(nèi)部構(gòu)造和直流無刷電機(jī)相似,但相比于直流無刷電機(jī),其僅有兩相輸入端。這也就造成該電機(jī)在通電后,正負(fù)極不變的情況下,電機(jī)旋轉(zhuǎn)至某一角度形成平衡后將會停止旋轉(zhuǎn)。切換正負(fù)極后則又會在另一個方向旋轉(zhuǎn)形成平衡。在電動牙刷的正常工作中,是通過兩相的正負(fù)極切換來使電機(jī)正反旋轉(zhuǎn)從而帶動刷頭做高頻運(yùn)動的。因此,其電機(jī)速度的控制依靠于輸出PWM的輸出頻率而非占空比??刂拼a如下:
void PWM_freqSet(uint8_t PWMx, uint16_t freq) { uint32_t arr; if(IS_PWM_INSTANCE(PWMx) == 0) return; if(freq == 0) { TIM15->ARR = 0; return; } if(freq > PWM_FREQ_MAX) freq = PWM_FREQ_MAX; if(freq < PWM_FREQ_MIN) freq = PWM_FREQ_MIN; arr = (PWM_TIMER_FRE / freq); if(PWMx == PWM_MOTOR) { TIM15->ARR = arr-1; TIM15->CCR1 = arr / 2; } }
上例中,PWM的占空比為50%,使得在一個PWM周期內(nèi),電機(jī)可完成一次往返運(yùn)動。
本文提出的設(shè)計(jì)方案的主旨是將電動牙刷智能化,在提高人們刷牙效率的同時(shí),也能達(dá)到進(jìn)一步保證人們刷牙質(zhì)量的目的。通過電動牙刷對慣性的數(shù)據(jù)采集,實(shí)時(shí)上傳至云端,并對數(shù)據(jù)進(jìn)行處理,恢復(fù)用戶的刷牙軌跡,給出合理建議,糾正用戶不良的刷牙習(xí)慣。磁懸浮電機(jī)的高頻振動也能有效清除口腔污漬。歲月恒久遠(yuǎn),牙齒永相隨 ^-^。
上海航芯 · 原廠直連:marketing@aisinochip.com